Targeting extra-oral bitter taste receptors modulates gastrointestinal motility with effects on satiation
نویسندگان
چکیده
Bitter taste receptors (TAS2Rs) are present in extra-oral tissues, including gut endocrine cells. This study explored the presence and mechanism of action of TAS2R agonists on gut smooth muscle in vitro and investigated functional effects of intra-gastric administration of TAS2R agonists on gastric motility and satiation. TAS2Rs and taste signalling elements were expressed in smooth muscle tissue along the mouse gut and in human gastric smooth muscle cells (hGSMC). Bitter tastants induced concentration and region-dependent contractility changes in mouse intestinal muscle strips. Contractions induced by denatonium benzoate (DB) in gastric fundus were mediated via increases in intracellular Ca(2+) release and extracellular Ca(2+)-influx, partially masked by a hyperpolarizing K(+)-efflux. Intra-gastric administration of DB in mice induced a TAS2R-dependent delay in gastric emptying. In hGSMC, bitter compounds evoked Ca(2+)-rises and increased ERK-phosphorylation. Healthy volunteers showed an impaired fundic relaxation in response to nutrient infusion and a decreased nutrient volume tolerance and increased satiation during an oral nutrient challenge test after intra-gastric DB administration. These findings suggest a potential role for intestinal TAS2Rs as therapeutic targets to alter gastrointestinal motility and hence to interfere with hunger signalling.
منابع مشابه
Modulation of the Bitter Taste to Reduce Calorie Intake
Article: The bitter taste receptor agonist quinine reduces calorie intake and increases the postprandial release of cholecystokinin in healthy subjects CC This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons. org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproducti...
متن کاملBitterDB: a database of bitter compounds
Basic taste qualities like sour, salty, sweet, bitter and umami serve specific functions in identifying food components found in the diet of humans and animals, and are recognized by proteins in the oral cavity. Recognition of bitter taste and aversion to it are thought to protect the organism against the ingestion of poisonous food compounds, which are often bitter. Interestingly, bitter taste...
متن کاملA High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing.
The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension an...
متن کاملThe Herbal Bitter Drug Gentiana lutea Modulates Lipid Synthesis in Human Keratinocytes In Vitro and In Vivo
Gentiana lutea is a herbal bitter drug that is used to enhance gastrointestinal motility and secretion. Recently we have shown that amarogentin, a characteristic bitter compound of Gentiana lutea extract (GE), binds to the bitter taste receptors TAS2R1 and TAS2R38 in human keratinocytes, and stimulates the synthesis of epidermal barrier proteins. Here, we wondered if GE also modulates lipid syn...
متن کاملSweet taste signaling in the gut.
T he taste system plays a critical role in determining whether a food is nutritious and should be ingested or is potentially toxic and should be rejected (1). Considerable attention has focused on the sweet taste of sugar because it is such a potent stimulator of eating in humans and many other animal species. A major advance in our understanding of sweetness perception was the discovery of two...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015